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Gradient extremals define stream beds connecting stationary points on 
molecular potential energy surfaces. Using this concept we have developed 
an algorithm to determine transition states. We initiate walks at equilibrium 
geometries and follow the gradient extremals until a stationary point is 
reached. As an illustration we have investigated the mechanism for exchange 
of protons on carbon in methylenimine ( H 2 C = N H )  using a multi-reference 
self-consistent-field wave function. 
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1. Introduction 

An important task of quantum chemistry is to systematically search Born- 
Oppenheimer potential energy surfaces for equilibrium and transition-state struc- 
tures. The methods presently favored for determining equilibrium structures 
calculate the molecular gradient explicitly at each point in the search and use 
update techniques to approximate the molecular Hessian [1-8]. 

Transition states are stationary points on the Born-Oppenheimer potential energy 
surface with Hessian index one (one negative eigenvalue). The determination of 
transition-state structures is more difficult than the determination of equilibrium 
structures, partly because minima are intrinsically easier to locate and also because 
usually no a p r i o r i  knowledge is available about transition-state structures. For 
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smaller molecular systems with few degrees of freedom, transition states have 
been determined by searching the whole potential energy surface or that part of 
it that is believed to be of interest [5, 6]. These searches are usually carried out 
having available at each point the molecular gradient and updates of the molecular 
Hessian [1-8]. With more degrees of freedom it becomes increasingly more 
difficult to use such an approach. Also the risk to miss a transition state becomes 
large, even with few degrees of freedom. 

Algorithms which determine the transition states by tracing the valley floors 
(stream beds) leaving equilibrium structures, have previously been described 
[9-13]. These walks are defined in terms of an uphill movement in the walk 
direction and a downhill movement (in some cases minimization) in the 
orthogonal directions. No rigorous definition is given of the moving direction in 
these algorithms. Recently, stream beds have been given a rigorous definition by 
Hoffman et al. [14] as the locus of points in the contour subspace where the 
gradient is extremal. (Work along this line has also been carried out by Pancf~ 
[15] and by Basilevsky and Shamov [16]). With this definition well-defined 
searches for transition states can be performed by tracing the gradient extremals. 
The gradient extremals connect stationary points on the potential energy surface, 
and are locally characterized by the requirement that the molecular gradient is 
an eigenvector of the (mass-scaled) molecular Hessian at each point on the line. 
At an equilibrium structure gradient extremals leave in all normal coordinate 
directions (positive and negative), and a systematic search for transition states 
therefore requires a search along all these gradient extremals. Gradient extremals 
may also bifurcate, a fact that has to be considered in a systematic search for 
transition states. In an appropriately mass-scaled coordinate system gradient 
extremals may be used as reaction path models in a simple description of the 
dynamics of a molecular reaction. 

In this paper we develop a simple and efficient algorithm to walk along gradient 
extremals. The algorithm uses the concept of having a trust region where the 
second-order Taylor expansion of the potential energy approximates well the 
exact potential energy surface [17]. Steps are determined inside the trust region 
from the second-order expansion. If the expansion has a stationary point inside 
the trust region with the desired index of the Hessian, then the Newton step is 
used to converge quadratically to this stationary point. If no stationary point 
with the desired Hessian structure exists inside the trust region, then the gradient- 
extremal point for the second-order expansion is determined on the boundary 
of the trust region and used as the next iteration point. The exact energy function 
has cubic and higher-order terms and the point that is obtained from a second- 
order expansion therefore gives only an approximate location of the true gradient- 
extremal point. However, by appropriately adjusting the size of the trust region 
an accurate estimate of the gradient extremal point of the exact potential energy 
surface can be determined to desired accuracy and a safe walk can therefore be 
carried out to the stationary point. We give in this paper numerical examples of 
walks along gradient extremals and demonstrate how the algorithm is capable 
of closely following gradient extremals. 
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2. The gradient-extremal walking algorithm 

2.1. Definition of  the gradient extremal 

Following Hoffman et al. [143 we define gradient extremals as lines on ~he 
mass-scaled potential energy surface E(x )  having the property that at each point 
Xo the molecular gradient g(xo) is a minimum (an extremum) with respect to 
variations within the contour subspace 

E(x)  = k = constant (1) 

passing through x0. Introducing the Lagrangian multiplier h this condition may 
be expressed as 

O[grg-  2A (E - k)J/Ox = O. (2) 

Carrying out the differentiation we obtain 

H ( x ) g ( x )  = A (x)g(x)  (3) 

where we have introduced the Hessian matrix H(x ) .  As will become apparent 
later, Eq. (3) provides an extremely useful local characterization of gradient 
extremals. Also Eq. (3) may be given the following simple interpretation: The 
gradient of  ]g]2 (i.e. 2Hg) is proportional to the gradient g at x. Since g is 
orthogonal to the contour subspace, Eq. (3) states that the gradient of  [g] 2 is 
orthogonal to the contour subspace at gradient extremals. For a more detailed 
discussion of  the properties of gradient extremals, see Ref. [14]. 

The usefulness of gradient extremals is related to the fact that they are unique 
lines connecting stationary points on potential energy surfaces. This, coupled 
with the fact that they are locally characterized, makes gradient extremals poten- 
tially more useful than steepest descent directions (which are only globally 
characterized) for exploring potential energy surfaces and molecular dynamics. 

2.2. Step size control 

We will describe an algorithm that may be used to walk along a gradient 
extremal from one stationary point to another. The gradient extremal may bifur- 
cate during such a walk. We defer the discussion of such cases to a later 
publication. 

We assume that the potential energy as well as its gradient and Hessian are 
calculated at each iteration. Before describing how steps are determined in the 
algorithm, we discuss the sizes of the steps that can be taken with confidence 
when the gradient and Hessian are calculated explicitly. 

Let us denote the geometry of the kth iteration xk, and assume that we have 
determined a step AXk 

Xk + ~ = Xk + AXk. (4) 



58 P. JCrgensen et al. 

The second-order Taylor expansion predicts a total energy at geometry point Xk+l 

E(2)(xk+0 = E(xk) + gT(xk)Axk + (1/2)AxkrH(xk)AXk (5) 

and the actual energy at this point is 

/~ (Xk+l) : E(2)(Xk+I) 2v RM, (6) 

where R M  contains terms of third and higher orders in Axk. As steps are 
determined using gradient and Hessian information, they can only be taken with 
confidence if E~2)(xk+l) approximates E(xk+l) well. A quantitative measure of 
the agreement between E(2)(xk+l) and E(xk+a) may be obtained from the ratio 
r, which compares the actual energy change E(xk+O-E(xk )  with the energy 
change predicted by the second-order expansion 

r = [E (xk+,) - E(Xk)]/[E(2)(Xk+,) -- E (xk)] 

= 1 + RM/[E~2)(xk+,) - E(xk)]. (7) 

If  this ratio is close to one, third-order terms are unimportant and the second-order 
expansion approximates the exact potential surface well. The size of the steps 
that can be taken in each iteration thus depends on how close r is to one. We 
introduce in each iteration a trust region with radius h where the second-order 
expansion approximates well the exact potential surface and we update in each 
iteration the trust radius according to the size of r. Algorithms for updating the 
trust radius have been described in [10, 17]. 

2.3. Direction of  the step 

We now describe how the step AXk in Eq. (4) is determined. Inside the trust 
region the gradient extremal of the second-order surface will describe accurately 
the gradient extremal of the exact surface. We use the gradient extremal of the 
second-order surface to determine the steps in the walk. We first describe how 
the gradient extremal is determined for a second-order surface. 

On the second-order surface the following simplifications occur in the gradient- 
extremal Eq. (3): 

H ( x ) =  H (constant) 

,~(x) =A (constant) (8) 

g(x) = g + Hx 

assuming that the origin is the center of expansion. Substituting Eqs. (8) in (3) 
we obtain 

( H - A 1 ) H x =  - ( H -  A1)g. (9) 

Let v be the eigenvector of H belonging to A (i.e. the eigenvector along the 
reaction path): 

( ~ - ~ l ) v : O .  (lo) 
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If A is non-degenerate, then ( H - ) t  1) is non-singular on the orthogonal comple- 
ment to v. Hence, introducing the projector 

P =  l - v v  r, (11) 

Eq. (9) may be written as 

P H x  = - Pg. (12) 

Since P and H commute, we obtain 

Px = - P H - 1 g  (13) 

assuming H is non-singular. The general solution of this equation is 

x(o~) = - P H  Ig+ cev, (14) 

where a is an arbitrary real parameter, x (a ) ,  the gradient extremal for the 
second-order surface, defines a straight line which is parallel to the eigenvector 
v and which passes through the solution of the projected Newton equation 
- p H - l  g. 

We return to the problem of determining the step AXk in the gradient-extremal 
walking algorithm. We recall that the step must either be inside or on the boundary 
of the trust region and that it also must be on the gradient extremal given by Eq. 
(14). To decide which point to choose we first examine if the stationary point of 
the second-order expansion is inside the trust region and if the Hessian has the 
desired number of negative eigenvalues. If this is the case.then the stationary 
point of the second-order surface (the Newton step) is used as the next iteration 
point Xk+~. If  the stationary point of the second-order surface is outside the trust 
region or if the Hessian does not have the desired index, then the gradient-extremal 
point on the boundary becomes the next iteration point. The gradient-extremal 
point on the boundary is determined by varying t~.in Eq. (14) to obtain a step 
length equal to the current trust radius h. 

It may happen that the gradient extremal of the second-order surface does not 
pass through the trust region. To mov~ back toward the gradient extremal we 
then take a step of length h in the orthogonal complement direction of the 
gradient extremal using the first term in Eq. (14). A better solution may be to 
reject the step that resulted in the iteration point far from the gradient extremal, 
go back to the previous iteration point, and calculate a new step using a reduced 
trust radius h. 

To clarify how a walk is carried out we describe a typical walk which begins at 
an equilibrium geometry and follows the gradient extremal leaving the stationary 
point in eigendirection v. As the gradient is zero at the equilibrium geometry the 
first step is of length h~ (default value) in the v direction. At iteration point 2 
the trust radius is updated, the Hessian is diagonalized, and the eigenvector of 
the Hessian that has the largest projection onto v (close to one) is identified and 
used to define the gradient extremal for the second-order Taylor expansion. The 
gradient-extremal point on the boundary of the trust region is then determined 
and the iterative procedure is continued. At some stage of the walk the stationary 
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point of the second-order expansion will be inside the trust region and this point 
can then be used as the next iteration point. In the following iterations a sequence 
of Newton steps is taken to converge quadratically to the stationary point. The 
walk may also be abandoned if the gradient extremal leads to a potential energy 
above a preset energy threshold so that the stationary point will have too high 
energy to be of interest. 

3. Numerical results 

To illustrate the described algorithm we have investigated the mechanism for 
exchange of protons on carbon in methylenimine ( H 2 C = N H )  in order to establish 
whether this occurs by rotation around the C = N  bond or by planar inversion 
at the nitrogen atom. 

From previous theoretical studies it is known that the equilibrium structure for 
methylenimine is planar. The proton exchange mechanism has been studied by 
Lehn and Munsch [18] and Pople et al. [19] at the Hartree-Fock level. (Pople 
et al. have also carried out M011er-Plesset calculations, but only at stationary 
points obtained from Hartree-Fock calculations.) These authors have concluded 
that the isomerization occurs by inversion rather than rotation, and that the 
transition state has C2~ symmetry. 

We have previously found that closed-shell Hartree-Fock gives a qualitatively 
wrong description of the cis-trans isomerization mechanism in diazene 
( H N = N H )  [20]. Using a complete-active-space self-consistent-field (CASSCF) 
wave function we established that the diazene isomerization proceeds both by 
planar inversion at nitrogen and by rotation around the N = N  bond. Conversely, 
at the closed-shell SCF level only the planar transition state exists. We therefore 
concluded that it is necessary to investigate the isomerization mechanism of 
methylenimine using a multi-reference rather than a closed-shell SCF wave 
function. 

The wave function was constructed by distributing four electrons among four 
orbitals (the tr and ~r bonding and antibonding CN orbitals). We used Tatewaki's 
(421/21) basis set on carbon and nitrogen augmented with a set of d functions 
(exponents 0.600 and 0.864, respectively) [21]. On hydrogen we used Dunning's 
2s contraction [22] of Huzinaga's 4s basis [23] with a set of p functions added 
(exponent 1.000). The calculations were performed using the SIRIUS/ABACUS 
program system [24-26]. During the walks the translational and rotational coor- 
dinates were projected out of the molecular Hessian as described in [13]. 

The optimized equilibrium geometry is depicted in Fig. 1. The calculated energy 
and dipole moment are -93.943384 Hartree and 1.95 Debye, respectively. There 
is no experimentally determined structure for methylenimine, but our results are 
in reasonable agreement with the empirical geometry suggested by Botschwina 
[27]. The largest difference is the NH bond length, which is 0.016 A shorter than 
that of Botschwina. 
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Fig. 1. Geometries of  methylenimine in walk from equilibrium to transition state 

Table 1. Calculated harmonic vibrational frequencies (cm -a) and double-harmonic infrared intensities 
(km/mol)  for methylenimine 

Equilibrium (C~) Transition state (C2v) 

Sym. Freq. Intens. Mode Sym. Freq. Mode 

A'  3648 7.8 NH str A 1 4188 
3301 43 asym CH 2 str 3066 
3204 36 sym CH2 str 1760 
1701 4.5 CN s t r + s y m  CH 2 def  1648 
1511 0.3 sym CH 2 d e f + C N  str B 2 3099 
1493 59 C N H  b e n d + C H  2 rock 1292 
1122 28 CH 2 r o c k + C N H  bend 1472 i 

A" 1235 42 torsion B~ 1133 
1091 16 CH 2 wag 638 

NH str 
sym CH 2 str 
CN s t r + s y m  CH 2 def 
sym CH 2 d e f + C N  str 
asym CH2 str 
C[-I 2 rock 
in-plane C N H  bend 
CH 2 wag 
out-of-plane CNH bend 
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The calculated harmonic frequencies are reported in Table 1. Our NH stretching 
frequency (3648 cm -x) is significantly higher than that determined by Botschwina 
[27] (3386 cm-1). The frequencies of Botschwina are in fair agreement with 
experiment. A better NH stretching frequency and bond length would be obtained 
by explicitly correlating the NH bond. 

The planar transition state was investigated by walking along the lowest eigen- 
mode of A' symmetry (1122 cm -1 at equilibrium). Using mass-weighted Cartesian 
coordinates, the transition state was reached after eleven iterations (see Fig. 1 
and Table 2). The transition-state energy is -93.880729 Hartree. The CN and 
NH bonds are both significantly shorter at the transition state, while the NH 
stretching frequency is significantly higher. The torsional frequency at equilibrium 
(1235 cm -1) correlates with the NH out-of-plane linear bend at the transition 
state (638 cm-~), while the NH in-plane linear bend (14 72i cm -~) corresponds 
to the reaction coordinate. 

The predicted energy barrier for the isomerization is 155.6 kJ/mol (vibrational 
zero-point harmonic correction included), which is considerably higher than the 
barriers obtained by Lehn and Munsch [18] (116.7 kJ/mol) and Pople et al. [19] 
(127.6 kJ/mol). 

From Table 2 we see that the walk traces the valley closely except in iterations 
4 and 5, and in the last three iterations where Newton steps are taken on the 
gradient extremal. In the region of iterations 4 and 5 the reaction mode changes 
character: whereas in the first four iterations stretching of the CN bond and 
rocking of the CH2 group occur, in the remaining iterations the CN bond shrinks 
and the CH2 group returns to a symmetrical configuration (see Fig. 1). 

It is clear that in iterations 4 and 5 the walk passes through a difficult region. In 
particular, the step determined in iteration 3 appears too large, so that the CN 
bond becomes too extended and the energy too high (in fact, higher than the 
transition-state energy). The algorithm may be modified to handle such situations 
more efficiently. The present implementation is designed to backstep only when 
the ratio between the predicted and actual energies is unacceptable. A more 
flexible algorithm may backstep and adjust the trust region based on additional 
criteria. Firstly, the overlap between the Hessian reaction eigenvectors of the 
previous and current iterations should always be larger than some preset value 
(for example 0.90) to ensure that the reaction mode is correctly identified. 
Secondly, the energy increase from one iteration to another may possibly also 
be required to be less than some preset value (perhaps based on the expected 
energy change in the reaction). Finally, in each iteration the ratio between the 
orthogonal and parallel components of the gradient should always be less than 
some preset value (for example 0.25) to ensure that the walk traces the valley 
closely. 

To investigate the presence of an out-of-plane transition state we carried out 
walks along each of the two A" eigenmodes. Both walks resulted in a stretching 
of the CN bond and the appearance of one negative eigenvalue associated with 
this stretching, indicating that the molecule dissociates. We therefore conclude 
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that the CN o- bond is not sufficiently strong to keep methylenimine from 
dissociating when the ~- orbital is broken. Thus methylenimine behaves differently 
from diazene, which does not dissociate when the N : N  bond is twisted. 

For comparison we carried out the same calculations at the closed-shell SCF 
level. These calculations gave similar equilibrium and transition-state geometries 
(the main difference being a significantly shorter CN bond length at the SCF 
level). However, the SCF potential surface is qualitatively incorrect for non-planar 
geometries since the CN bond does not dissociate when twisted. Instead, there 
exists a non-planar saddle point of Czv symmetry with two directions of negative 
curvature (rotation around the CN bond and CNH bending). A walk initiated 
along the rotational eigenmode of the equilibrium geometry passed through this 
region after ten iterations and then proceeded along the CNH bending mode 
until it finally arrived at the planar transition state described above. 

4. Discussion 

The stream beds connecting equilibrium geometries and transition states have 
recently been rigorously defined by Hoffman et al. [14] as the locus of points in 
the contour subspace where the gradient is extremal. As an implication the stream 
beds or gradient extremals become locally characterized by the requirement that 
the molecular gradient is an eigenvector of the (mass-scaled) molecular Hessian 
at each point on the gradient extremal. This local characterization of stream beds 
has been used to develop a walking algorithm which follows the gradient extremals 
from equilibrium structures to transition states. We assume that the molecular 
gradient and Hessian are calculated at each iteration point, and we define at 
each iteration a trust region inside which the second-order expansion of the 
potential energy is a good approximation to the exact surface. Steps may only 
be taken inside or on the boundary of the trust region. The actual direction and 
size of the steps are determined by locating the gradient extremal for the second- 
order Taylor expansion. If the gradient extremal for this expansion contains a 
stationary point with the desired Hessian index inside the trust region, then the 
Newton step is taken to converge to this point. If no stationary point with the 
desired Hessian index exists inside the trust region, then the crossing between 
the gradient extremal of the second-order expansion and the boundary of the 
trust region is used to determine the step of the walking algorithm. By appropri- 
ately adjusting the size of the trust region we can trace the gradient extremal of 
the exact potential surface to desired accuracy. Our numerical experience has 
shown that the algorithm determines transition states efficiently if the gradient 
extremal does not bifurcate. The complications which occur when bifurcations 
occur will be discussed in a future publication. 
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